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Supplementary Figure S1. PS1-G378E neurons did not show significant differences in RAB3A 

and SV2B gene expression levels 

Gene expression levels of RAB3A, SV2B, Synaptophysin (SYP) and Synaptotagmin 1 (SYT1) were 

indicated in PS1-G378E neurons (G378E) relative to PS1-WT neurons (WT). β-actin was used as an 

internal control. Each gene expression level in PS1-WT neurons was defined as 1.0. Mann–Whitney 

U test was used to check for differences in expression levels. Four independent experiments, each 

time in triplicates were performed (n = 4). Mean ± SD. 
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Supplementary Figure S2. Cholinergic neurons derived from PS1-overexpressing hESCs. 

 

Immunocytochemistry using antibodies against a cholinergic neuron marker, choline 

acetyltransferase (ChAT, red) and a neuron marker, βIII-tubulin (βIII, green) were carried out. Cells 

were counterstained with 4′,6-diamidino-2-phenylindole (DAPI, blue) to visualize nuclei. Scale bar, 

100 μm. A few cells (0.9 ± 0.7%) were detected as choline acetyltransferase-positive neurons in 

hESC-derived neurons used in this study. 
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Supplementary Figure S3. Drug responses and cell viability of PS1-G378E neurons derived from 

three subclones expressing mutant-PS1 

The effects of Aβ inhibition (A) and cell survival (B) in the presence of various concentrations of 

DAPT using three subclones of PS1-G378E neurons. The amount of Aβ40 and cell viability in 

DMSO-treated PS1-G378E neurons was defined as 1.0. Three independent experiments, each time 

in triplicates were performed (n = 3). Mean ± SD. 

 

Using 3 subclones (No.1 – 3) of the hESCs overexpressing PS1-G378E (PS1-G378E hESCs), we 

investigated whether there is any variation among neurons derived from the PS1-G378E hESC 

subclones. In our previous report, it was confirmed that the PS1 protein expression levels were not 

significantly different between different subclones1. DAPT-response experiments showed that there 

were also no differences in DAPT responses (Aβ40 reduction and cell viability) among the 

subclones (Supplementary Fig. S2). These data indicate that there are no significant variations 

among PS1-G378E subclones. In addition, all of clones had an identical genetic background because 

the site-specific gene integration method was applied for establishing clones overexpressing mutant 

PS1. Hence we used each single clone of PS1-G378E neurons for the experiments in this study. 
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Supplementary Figure S4. Preparation of synaptosomes from the PS1-WT and PS1-G378E 

neurons 

Neural differentiation, following synaptosome preparation were independently carried out four times 

(n = 4).  Immunoblot analyses of a pre-synaptic protein, SNAP25 were performed using the whole 

cells and synaptosomes of PS1-WT and PS1-G378E neurons. These data indicated that isolation of 

synaptosomes was successfully carried out in all preparation. β-actin (ACT) was used as an internal 

control. WT, PS1-wild type neurons; G378E, PS1-G378E neurons; wh, whole cells; sy, 

synaptosomes. 
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Supplementary Table S1. Result of chemical screening 

 Chemicals 

Relative Aβ40 ratios* Relative viability 

ratios 

(2nd screening)** 

1st  

screening 

2nd 

screening 

γ-secretase inhibitor 

Semagacestat 

(LY-450139)2 
0.088 - - 

Avagacestat 

(BMS-708163)3 
0.050 - - 

DAPT(GSI-IX)4 0.14 - - 

LY-4115755 0.23 - - 

MK-07526 0.10 - - 

YO-01027 

(Dibenzazepine)7 
0.11 - - 

Bcr-Abl inhibitor Nilotinib8 0.21 0.23 0.85 

Calcineurin inhibitor Pimecrolimus 0.20 0.27 0.87 

HMG-CoA reductase 

inhibitor 

Fluvastatin 

Sodium9 
0.28 0.37 0.96 

Rosuvastatin 

Calcium 
0.18 0.19 0.91 

Imidazole derivative 
Sulconazole 

Nitrate salt 
0.23 0.25 1.04 

Selective estrogen 

receptor modulator 
Toremifene Base 0.27 0.23 0.92 

*, The Aβ40 level of DMSO treatment was considered to be 1.0. 

**, The cell viability ratio of DMSO treatment was considered to be 1.0. 
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Supplementary Table S2. The numerical data of figure 2d and 2e 

 
Relative Aβ40 ratios (Mean±SD)* 

 
K1 + chemicals 

chemicals (μM) Nilo Pime Rosu Sulc Tore 

0.001 0.96±0.21 0.80±0.20 0.95±0.16 0.90±0.12 0.79±0.17 

0.01 0.89±0.13 0.69±0.15 0.85±0.10 0.78±0.17 0.86±0.10 

0.1 0.93±0.06 0.75±0.07 0.72±0.17 0.87±0.15 0.77±0.17 

1 0.71±0.12 0.74±0.13 0.72±0.36 0.63±0.21 0.63±0.20 

10 0.24±0.10 0.52±0.17 0.39±0.07 0.30±0.14 0.14±0.06 

 

 
Relative viability ratios (Mean±SD)** 

 
K1 + chemicals 

chemicals (μM) Nilo Pime Rosu Sulc Tore 

0.001 1.16±0.10 1.05±0.09 0.97±0.18 1.04±0.19 1.19±0.25 

0.01 1.19±0.23 1.07±0.15 0.93±0.11 1.19±0.22 1.02±0.09 

0.1 1.09±0.09 0.99±0.11 0.94±0.12 0.98±0.19 1.05±0.19 

1 1.05±0.18 1.02±0.10 0.84±0.18 1.11±0.12 0.97±0.22 

10 0.62±0.14 0.86±0.22 0.72±0.14 0.72±0.12 0.67±0.22 

*, The Aβ40 level of DMSO treatment was considered to be 1.0. 

**, The cell viability ratio of DMSO treatment was considered to be 1.0. 

K1, KhES-1-derived neurons; Nilo, Nilotinib; Pime, Pimecrolimus; Rosu, Rosuvastatin Calcium; 

Sulc, Sulconazole Nitrate; Tore, Toremifene Base. 
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